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Abstract-Fully developed laminar forced convective heat transfer in helical square ducts is studied 
numerically using a finite-volume method. The HI thermal boundary condition is applied. Dean numbers 
up to 510 and Prandtl numbers between 0.005 and 500 are considered. Correlations for the mean Nusselt 
number are proposed. For a toroidally curved duct, two solution branches with a two-vortex secondary 
flow and one branch with a four-vortex flow are detected. The four-vortex solutions give, for high Pr, 
mean Nusselt numbers up to twice those of the two-vortex solutions. For ducts of small pitch or torsion, 
the flow and heat transfer characteristics are similar to those of a toroidally curved duct with the same 

dimensionless curvature a. Copyright Q 1996 Elsevier Science Ltd. 

INTRODUCTION 

A characteristic feature of flow in curved ducts is the 
so-called secondary flow, which is set up due to the 
centrifugal force. The secondary flow is the projection 
of the fluid velocity onto the cross-plane of the duct. 
For a toroidally curved duct, for example, the sec- 
ondary flow often consists of two symmetric counter- 
rotating cells. The secondary flow increases the mean 
heat and mass transfer rates, a phenomenon utilized in 
industrial applications, as for example in heat transfer 
equipment, chemical processes and medical equip- 
ment. The increased transfer rates of curved ducts, 
compared to those of straight ducts, are most promi- 
nent for laminar flow. For turbulent flow, according 
to Shah and Joshi [1], curved ducts offer no other 
significant advantage than space saving. 

Previous works on fluid flow and convective heat 
transfer in curved ducts are reviewed in refs. [l-3]. 
Mostly toroidally curved ducts of circular cross-sec- 
tion have been considered in the past. Ducts of rec- 
tangular cross-section have not been greatly inves- 
tigated, especially with respect to convective heat 
transfer. Also helically coiled ducts with a finite pitch 
have been studied quite sparsely. The latter cir- 
cumstance may be due to the increased mathematical 
complexity associated with the finite pitch. Often the 
helical geometry is modelled by providing the centre- 
line of the duct with a finite torsion, apart from the 
finite curvature characteristic of any curved duct. The 
torsion gives rise to the pitch, and it also makes the 
associated coordinate system nonorthogonal. For a 
nonorthogonal coordinate system, the choice of vel- 
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ocity components is not obvious. The components 
obtained from an expansion of the velocity vector in 
the so-called natural basis are called contravariant. 
The base vectors of the natural basis are tangents 
to the coordinate curves. Thus, for nonorthogonal 
coordinate system, the natural basis is nonorthogonal, 
and it is inconvenient to use. It is preferable to use a 
physical, i.e. an orthonormal, basis for the velocity, 
since then the (physical) velocity components are 
obtained as the projections of the velocity vector on 
the respective physical base vectors. The rec- 
ommended choice of physical basis is the tangent t, 
normal n and binormal b of the centre-line of the duct. 
Among the previous authors on helical duct flows, 
both physical and contravariant components have 
been employed, and different conclusions about the 
effect of torsion on the flow have been put forward, 
see Bolinder [4, 51 for a review. The convenience of 
using physical components is also demonstrated in the 
experimental investigation by Bolinder and Sundtn 
PI. 

Laminar forced convection in toroidally curved 
ducts of rectangular cross-section has been studied for 
example by Cheng and Akiyama [7] and by Mori et 
al. [8]. They considered fully developed conditions 
and applied the Hl thermal boundary condition, i.e. 
constant wall heat flux in the axial direction and uni- 
form wall temperature peripherally. Mori et al. also 
carried out experiments. Cheng et al. [9] studied ther- 
mally developing flow with the T and H2 boundary 
conditions, i.e. uniform wall temperature and uniform 
wall heat flux, respectively. The asymptotic Nusselt 
number was found to be similar for the two boundary 
conditions, and a single correlation was given, pre- 
sumed to be valid for both conditions. Komiyama et 
al. [lo] investigated ducts with varying aspect ratio, 
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NOMENCLATURE 

a half width of duct I time 

A, (wetted) wall area of duct, equation t tangent of centre-line, ri 
(17) T temperature 

b half height of duct To T-7, 
b binormal of centre-line t x n Tb bulk mean temperature, equation (20) 

C, specific heat u. L secondary flow components, v - n and 
dh hydraulic diameter, 4ab/(a+ b) v *b, respectively 
De Dean number, Re& L!. I’ dimensionless secondary flow 
e,. e,, e; unit base vectors of cylindrical components, (u. 0)&/v 

coordinate system, see Fig. 1 V velocity vector 
E efficiency. equation (29) II‘ axial flow component, v * t 

.f’ friction factor, - (@/r?s)d,/(2pa’) \r mean axial flow 
h heat transfer coefficient, qN/( T, - T,) .s. \ coordinates along n and b, 
k thermal conductivity respectively. 
27cK pitch of helical duct, 27ct/(ti’+ 7’) 
L,, Lz, L,. L, limit points, one-sided Greek symbols 

bifurcation points r slope of centre-line. equation (4) 
M 1 -ti.Y *. i axial temperature gradient, dT/& 

I: 

normal of centre-line, r:l/ti 8 dimensionless curvature, KC& 

inward-pointing unit normal, equation ‘1 dimensionless torsion, tdh 

(16) H dimensionless temperature, 
NM Nusselt number, hd,ik (Tw - To)llldh 
P generalized pressure. including effect :J angle along centre-line, s/J= 

of gravity k’ curvature of centre-line, R/(R’+p) 
Pr Prandtl number, C,pv/k \ kinematic viscosity 

qN inward heat flux normal to duct wall P density 
w m-‘1, equation (14) 5 torsion of centre-line, K/(R2+ K’). 

r position vector, equation (7) 
rc position vector of centre-line, equation Subscripts 

(1) m peripheral mean value 
R radius of helical duct, K/(X’ + T’) S value for straight duct 
Re Reynolds number, wd,/v W value at duct wall. 
S arc length of centre-line, streamwise 

coordinate Superscript 
S,, &, S, solution branches derivative with respect to s. 

utilizing the Hl boundary condition. More recently 
Hwang and Chao [1 1] considered fully developed con- 
ditions with the T boundary condition, but without 
neglecting the axial conduction term in the energy 
equation. 

The effect of a finite pitch on laminar forced con- 
vective heat transfer has been studied in a few recent 
papers. Yang et al. [12] and Liu and Masliyah [13] 
considered ducts of circular cross-section. Curiously 
enough, the asymptotic temperature profiles of Liu 
and Masliyah (their Fig. 10) differ significantly from 
those of Yang et al. (their Fig. 2), despite the fact 
that similar conditions prevail. Yang et al. predict a 
‘rotated’ profile for Pr = 1, and a strongly skew profile 
for Pr = 10. Liu and Masliyah [13] predict a much 
weaker effect of a relatively small torsion. Considering 
the results of the present investigation, the predictions 
by Liu and Masliyah seem more reliable. Eason et al. 
[ 141 analysed simultaneously developing flow and heat 

transfer in square helical ducts applying the T bound- 
ary condition. They considered a duct with a relatively 
small pitch and with varying curvature. The governing 
equations were solved using a commercial finite 
element code. Thus, they were not able to take advan- 
tage of the exact problem formulation available by 
describing the geometry in terms of the curvature and 
the torsion of the centre-line of the duct (see the next 
section). No specific information on the method of 
generating the duct geometry was given. 

A few studies on laminar forced convective heat 
transfer in straight twisted rectangular ducts have 
been carried out, e.g. by Masliyah and Nandakumar 
[ 151 and Nandakumar and Masliyah [ 161, who applied 
the T boundary condition. A straight twisted duct is 
characterized by the centre-line having a zero cur- 
vature and a nonzero torsion, and is thus related to 
the helical duct. It was found in refs. [15. 161 that the 
mean Nusselt number for a straight twisted square 
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duct always is lower than that for a straight untwisted 
duct. For a rectangular twisted duct with an aspect 
ratio differing from one, a slight enhancement of the 
Nusselt number was obtained for certain flow 
conditions. 

In this investigation, fully developed laminar forced 
convective heat transfer in helical square ducts is ana- 
lysed numerically using the finite-volume method. The 
Hl thermal boundary condition is applied, which may 
be realized experimentally for example in electrically 
heated ducts with highly conductive walls. The study 
is based on the flow field analysis presented in Bolinder 
[4, 51, and it thus features the pure effect of torsion on 
the heat transfer characteristics keeping the curvature 
fixed. In addition to the mean Nusselt number, the 
local peripheral variation of the Nusselt number is 
provided for a few cases. Prandtl numbers between 
0.005 and 500 are considered. 

GOVERNING EQUATIONS 

The position vector of the centre-line of a helical 
duct may be written 

rCts) = &(s) + KW)e,, where S(s) = s/J-. 

(1) 

The parameter s, which is the arc length of the 
centre-line, is used as a coordinate along the duct. 9 
is a polar angle, R is the radius of the cylinder to 
which the centre-line is coiled, and 2nK is the so-called 
pitch, see Fig. 1. e,, e, and e, are unit base vectors of 
the cylindrical coordinate system indicated in Fig. 1. 
The tangent t, normal n and binormal b of rc are 
defined by 

2b 

Fig. 1. Helical square duct. 

27cK 

t = r:, n=l,E, b=txn, 
K 

(2) 

where ’ denotes a derivative with respect to s. Note 
that t, n and b are orthonormal. For the helical centre- 
line described by equation (1). one obtains 

t(s) = cos ae&) + sin aezr 

n(s) = -e,(s), 

1. 
(3) 

b(s) = - sin cre&) + cos cre= 

tl is the slope of the centre-line relative to the plane 
z = constant. One finds that 

cosc[ = J&,sina = J&. (4) 

The curvature K and the torsion r of rc are defined 
by 

K = ]r:l, r = n’ * b. (5) 

Equation (1) gives 

R K 
K- 

R=+K= T=m+ 

It is illustrative to evaluate equations (3), (4) and 
(6) for the special cases of a toroidal duct (K = t = 0) 
and a straight twisted duct (R = K = 0). Let x be a 
coordinate along the normal n and y a coordinate 
along the binormal b, according to Fig. 1. Then the 
position vector of any point in the duct may be written 

r(s,x,y) = r&)+xn(s)+yb(s). (7) 

The so-called natural base vectors of the coordinate 
system (s, x, y) are obtained as the partial derivatives 
of r with respect to the coordinates, they are thus 
tangents to the coordinate curves. One finds that the 
natural base vectors are nonorthogonal for points off 
the centre-line, except for a toroidal duct (with r = 0). 
By expanding the velocity vector in the natural basis, 
the so-called contravariant velocity components are 
obtained. However, as discussed in the introduction, 
if the natural basis is nonorthogonal it is more appro- 
priate to expand the velocity in the physical basis 
(t, n, b). Accordingly one has 

v = wt+un+vb, (8) 

where w is the axial flow, and u and v constitute the 
secondary flow. 

The continuity equation and the Navier-Stokes 
equations, expressed in terms of the coordinates s, x 
and y and the physical velocity components w, u and v, 
and assuming an incompressible and fully developed 
flow, are given by 

&(Muiryw)+ $(MU-rxw) = 0, (9) 
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The present thermal boundary condition of con- 
stant axial wall heat flux, with uniform peripheral wall 

C’ I in. c’ll f’ll temperature, may be realized by assuming a tem- 
_- ~~ . _MPP +TrP --,y 

i i (7.X M (7.Y ?s 
~, + till’-- 52‘ 

i 
perature field of the form 

(loa) with 

T(s, x,?‘) = s’s+ T(,(.x,.V), (12 

T,,(.Y, ~3) = T, = constant at the wall. 

;’ is then the constant axial temperature gradient. A 

2u _ TSC’I +h'li'--51' . 

where 

M = 1 -ICY’. 

dimensionless temperature may be defined by 

(13) 

The assumption of a fully developed flow means 
that all s-derivatives are set to zero. except for the 
pressure derivative ?p!?s. which is assumed to be con- 
stant. 

The energy equation. assuming constant fluid 
properties and neglecting viscous dissipation, reads 

The local heat flux (directed inwards) normal to the 
duct wall is defined by 

q, = -+T*N, (14) 
Lb’ 

(IOb) 
where the temperature gradient is given by 

(15) 

and the inward-pointing unit normal 

N = (syt+Mn)/Jw’, at .Y = -u, 

Tli N =(-sxt+Mb)iJT’.l-‘+ML, at?, = -h, I 

(16) 

and similarly with reversed sign at the walls s = a and 
J = h, respectively. Note that for t # 0 the normal N 
will have a component in the direction of the tangent 

(10~) t. In equation (14), A, is the real (wetted) wall area 
of the duct, and A,, the wall area for a straight duct 
with the same cross-section and length. A, is obtained 
from 

(17) 
where the area elements (and for completeness also 
the volume element) are given by 

dA, = J?J*’ +M2 dsdy. for x = const. 

dA, = Jmddsds. fory = const. 

dA, = dsdy. for s = const. 

dl’ = Mdsdsd? I 

(18) 

By evaluating equation ( 17), one may conclude that 
for a duct with T # 0 the wall area will be greater than 
that of a straight (or toroidal) duct with the same 
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cross-section and length. This circumstance can cause 
difficulties in the actual manufacturing of helical rec- 
tangular ducts, since the material has to be stretched 
nonuniformly to obtain a correct cross-section. For a 
dimensionless torsion q = rds = 1 (the highest con- 
sidered in this investigation), the wall area is about 4% 
larger than for a similar straight duct. An increased 
surface area will give an increased heat transport. 
Therefore, to allow a direct comparison with a straight 
duct, and also to avoid the evaluation of equation 
(17), the heat flux is defined according to equation 
(14). This means that, to obtain the heat transfer 
rate (in watts) for any duct, the heat flux qN is to be 
multiplied by A,,. The local heat transfer coefficient 
is defined by 

h = (T,YTJ (19) 

where Tb is the bulk mean temperature, which is given 
by 

Tw dA. (20) 

The local Nusselt number is defined by 

Nu=hdh. 
k 

The peripheral mean heat transfer coefficient h, is 
defined by 

where q,, is the peripheral mean heat flux, which is 
obtained from 

1 -~ 
qNm - 4(a + 6) s 

qN dl. (23) 
periphery 

By integrating the energy equation over a finite 
duct length, one may deduce the following alternative 
expression for the mean heat flux : 

4 - kyPrRej4. Nrn - (24) 

For the mean Nusselt number one then obtains 

yPrRed, 
Num = k = k( T, _ Tb) = 4( T, _ Tb) ’ (25) 

NUMERICAL PROCEDURE AND ESTIMATED 

ACCURACY 

For constant fluid properties, the continuity and 
the Navier-Stokes equations may first be solved to 
obtain the velocity field. The energy equation is then 
solved for the temperature field. The procedure for 
obtaining the velocity field is described in more detail 
in refs. [4, 51. In summary, the well-known finite vol- 
ume method with a staggered grid is employed, see 
Patankar [17]. The hybrid difference scheme is 

employed, which formally is only first-order accurate. 
However, by using a sufficiently fine grid, in this case 
a uniform 41 x 41 grid, mostly central differences 
appear from the hybrid scheme, so that second-order 
accuracy is practically achieved. The velocity-pressure 
coupling is handled by using the SIMPLEC algorithm 
of Van Doormaal and Raithby [18]. Their rec- 
ommended accelerated TDMA-solver was also found 
effective. The streamwise component of the pressure 
gradient is used as input to the computations, and the 
Reynolds number is then calculated from the con- 
verged solution. 

The energy equation is solved according to a similar 
procedure. However, for Prandtl numbers greater 
than one, it was necessary to apply a higher order 
scheme for the convection terms to obtain an accept- 
able accuracy. This is so, since for high Prandtl 
numbers, the magnitude of the convection terms are 
enlarged compared to the diffusion terms. This means 
that an increased amount of upwind differencing will 
appear from the hybrid scheme, and accuracy is lost. 
The QUICK scheme by Leonard [19] was chosen, 
which in two dimensions should be second-order accu- 
rate. For Prandtl numbers less than one, the hybrid 
and the QUICK scheme gave identical results. Central 
differences were used for the diffusion terms and the 
source terms. The TDMA-solver [ 181, with a e-value 
of 1.9, was used together with an ADI-technique, i.e. 
alternating sweeps in the x- and y-directions. An 
under-relaxation factor of 0.9 worked well for the 
lower Prandtl numbers. However, for highest Prandtl 
numbers, a factor as low as 0.35 proved necessary. No 
convergence problems were encountered, although 
many iterations (up to 100000) were required for 
simultaneously high Dean (De = ReJ;cd,) and 
Prandtl numbers. The computations were carried 
out on a DEC 3000/400 AXP workstation. 

Concerning the accuracy, we may at first conclude 
that the major part of the error is due to the discre- 
tization. The error due to an insufficient degree of 
convergence on a specific grid is negligible, since the 
convergence was in each case forced to the maximum 
capacity of the computer, using single precision arith- 
metics. This applies for both the velocity and the tem- 
perature fields. The convergence of the temperature 
field was also checked by comparing the mean heat 
fluxes obtained from the alternative equations (23) 
and (24). The difference was generally less than 
0.0 1%) and at most 0.1% for the most severe cases. 
The discretization error was estimated by comparing 
the solutions obtained on three different uniform 
grids, 41 x41, 61 x61 and 81 x81, respectively. 
Assuming second-order accuracy, h*- or Richardson 
extrapolation (see ref. [5]) was also performed in a 
few cases to obtain fourth-order accuracy. For exam- 
ple, for Pr = 10 and De = 5 10 (the highest Dean num- 
ber considered ; at the four-vortex branch of the toro- 
idal duct), the extrapolated mean Nusselt number, 
using the QUICK scheme and 61- and 81-grids, was 
determined to 20.5. A 6% higher value was obtained 



3106 C. J. BOLINDER and B. SUNDEN 

s 80 - 

L 60 - cd- 
; 40 - 

& 20 - 
3 

L,, b- Limit points 

0 150 200 
De 

Fig. 2. State diagram for toroidal square duct with 8. = 0.2. Secondary and axial flow at three states. Outer 
wall is to the right. 

on a 41-grid. and a 2.6% higher on a 61-grid. Par- 
enthetically, we note that the hybrid scheme produced 
a 40% too high value on a 41-grid for the same case. 
The above example is among the most severe ones 
considered, and for smaller Dean and Prandtl num- 
bers the error is also smaller. For the highest Prandtl 
numbers of 100 and 500, the extrapolated values using 
41- and 61-grids and 61- and 81-grids, respectively, 
did not always coincide. For example. at De = 510, 
the difference was 16% for Pr = 500 and 11% for 
Pr = 100. This is to be compared to a difference of 
2.4% for Pr = 30 and only 0.2% for Pr = 10. For 
lower Dean numbers, the deviations are smaller. For 
example at L8 (De = 337) : 2.5% for Pr = 500 and 
I .O% for Pr = 100. These results indicate that a 4 l- 
grid for high Prandtl and Dean numbers is insufficient 
to obtain second-order accuracy. In conclusion, a 41- 
grid is in most cases reasonable accurate, and this grid 
was mostly employed. For the severe cases, a 61-grid 
was adopted, but a few times also an 81-grid. The 
errors in the presented mean Nusselt numbers should 
at most be 3%. but are often less than 1.5%. 

RESULTS AND DISCUSSION 

Flow field 
Figure 2 is a state diagram for a toroidal square 

duct with dimensionless curvature 8 = Kd,, = 0.2. On 
the vertical axis is the dimensionless u-component of 
the secondary flow at a point close to the outer wall. 
Three solution branches were detected, denoted by S,. 
& and S,. The end points of the branches are called 

limit points, and they are denoted by L,, L2, L, and 
Lx, respectively, following the notations employed by 
Winters [IO]. The precise locations of the limit points 
have been determined in ref. [5], using /?-extra- 
polation The present solution method is transient, 
as opposed to direct, which means that only stable 
solution branches can be detected. S, and S, are 
unconditionally stable branches characterized by the 
secondary flow having two symmetric counter-rot- 
ating vortices. This is seen in the vector plots in Fig. 
2, where contours of the axial flow are also given, and 
we note that the maximum of the axial flow is shifted 
towards the outer wall. The S1 branch is unstable for 
asymmetric perturbations, and could only be detected 
by imposing symmetry about the .u-axis. Solutions of 
the Si branch have a pair of extra counter-rotating 
vortices at the outer wall, and where these occur the 
axial flow has a depression. Converged solutions of 
the S, branch were obtained up to a Dean number of 
about 550, no precise upper limit was determined. 

Figure 3 shows the extent of the S, and Ss branches 
for helical square ducts with E = 0.2 and increasing 
torsion q. S, could not be detected for a finite torsion. 
For ducts with small torsion, both the flow field and 
the extent of the detected branches are similar to the 
conditions for a toroidal duct with the same dimen- 
sionless curvature E. The lower vortex of the secondary 
flow is enlarged at the expense of the upper vortex, 
and the axial flow only shows a very slight asymmetry. 
For higher torsion, the S, branch could not be 
detected, and the extent of the S, branch at first 
decreases, and for even higher torsion it then increases 
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Fig. 3. Extent of S, and S, branches for helical square ducts with E = 0.2. Secondary and axial flow at four 
states. Outer wall is to the right. 

to higher Dean numbers again. For high enough 
torsion, the secondary flow approaches a one-vortex 
structure, and the maximum of the axial flow is shifted 
towards the inner wall. 

For certain Dean numbers, no unconditionally 
stable, fully developed flow solutions are obtained, as 
for example between the S, and S5 branches, and 
above &. If one performs unsteady, fully developed 
computations without assuming symmetry for Dean 
numbers between L2 and L3, the how is found to 
oscillate regularly between a two-vortex and a four- 
vortex structure. For a helical square duct, this is 
shown in Bolinder and SundCn [6]. An analogous 
behaviour is reported by Sankar et al. [21] and Bara 
et al. [22], in their steady and parabolic computations 
of developing flow in a toroidal square duct ; for Dean 
numbers between L2 and L3, spatial oscillations 
develop, alternating between a two-vortex and a four- 
vortex structure. To reveal a more exact nature of the 
oscillations, it might be necessary to perform unsteady 
and fully elliptic computations of developing flow. In 
the experiments in ref. [6], a steady two-vortex flow 
was normally obtained for Dean numbers between L2 
and L,, where the fully developed numerical com- 
putations predicted an oscillating flow. Only by dis- 
turbing the flow at the inlet of the duct, a four-vortex 
flow could occasionally be realized. For Dean num- 
bers above L8, transition phenomena eventually 
appear. According to the unsteady computations and 

the experiments in ref. [6], extra vortices emerge spon- 
taneously and irregularly from the outer wall, with 
an increasing frequency for increasing Dean numbers 
above L,. Mori et al. [8] detected transition at 
De = 850 in their experiments, and for De > 2500 the 
flow was fully turbulent. Some of the axial flow pro- 
files in the paper by Eason et al. [14] show a depression 
at the outer wall, which indicates occurrences of extra 
vortices. 

Temperature field 
Figures 4 and 5 show contours of the dimensionless 

temperature 0 at the same states as in Figs. 2 and 3. 
For ducts of small and moderate pitch, the appearance 
of the temperature field depends highly on the Prandtl 
number. For Pr = 0.01, characteristic of liquid 
metals, the diffusion terms dominate in the energy 
equation, and the secondary flow influences the tem- 
perature field only to a very slight extent. According 
to Fig. S(a), for ducts of small torsion, the position of 
maximum temperature (or minimum, if the fluid is 
heated) is moved somewhat towards the outer wall, 
while for a high torsion the maximum is moved instead 
towards the inner wall, but the overall distortion of 
the temperature field is small. 

For a Prandtl number of 0.71, characteristic of 
gases, the temperature profiles are similar to the axial 
flow profiles, see Figs. 4 and 5(a). Thus, for a small 
torsion, the position of maximum temperature is 



3108 C. J. BOLINDER and B. SUNDEN 

L,, b, 5, b- Limit poin 

Fig. 4. Diagram as in Fig. 2. &contours for Pr = 0.71 (left) and Pr = 10 (right) 

shifted towards the outer wall, and the torsion only 
causes a slight asymmetry. For Prandtl numbers 
greater than one, characteristic of various liquids. the 
convection terms in the energy equation become more 
important, and the O-contours resemble streamlines 
of the secondary flow, see Figs. 4 and 5(b). 

While the Prandtl number greatly affects the shape 
of the temperature field for ducts of small torsion. the 
effect diminishes for increasing torsion. For example, 
for r~ = 1 in Fig. S(a, b), the &plots are all quite simi- 
lar, even though the Prandtl number varies between 
0.01 and 100. The effect of torsion on the temperature 
field seems to increase slightly for increasing Prandtl 
numbers: the Q-plots in Fig. 5(a, b) become more 
asymmetric as the Prandtl number increases. 

In Fig. 6 three-dimensional-plots of the temperature 
field for a toroidal square duct at the upper limit of 
the S, branch for Prandtl numbers between 0.71 and 
100 are shown. For increasing Pr, the effect of 
diffusion diminishes, and cold fluid (or hot, in the case 
of heating) at the inner wall is carried by the secondary 
flow farther towards the outer wall without being 
diffused. Note also the quite similar profiles for 
Pr = 10 and 100, which indicates an independence of 
the Prandtl number for high enough Pr. 

In Fig. 7 three-dimensional-plots of 0 for solutions 
of the S, branch, i.e. the branch characterized by the 
secondary flow having two extra vortices at the outer 
wall are shown, see Fig. 2. For Pr = 0.71. the &profile 
resembles the axial flow profile as usual. For Pr > I, 
two extra ‘bumps’ in the O-profile appear at the 
location of the extra vortices. The base level of these 
extra bumps is lowered for increasing Pr, and it is 

likely that for high enough Pr a limit is reached. The 
computations for Pr = 500 indicated a flattening of 
the extra bumps, and for even higher Pr the extra 
bumps may totally disappear. However, the numerical 
uncertainties for high Prandtl numbers prevent a 
definite conclusion in this matter. 

Mean Nusselt numbers 
The results above for the temperature field showed 

that the effect of a small or moderate pitch is minor. 
Therefore. the Nusselt number results for toroidal 
square ducts will first be discussed quite extensively, 
and then the validity of the rest&s for helical ducts is 
pointed out. Figure 8 shows the Nusselt number ratio 
Nu,,/(Nu,), for a toroidal square duct and for 
Pr = 0.71. The index s refers to a straight duct, for 
which Nu, = 3.608 for the H1 boundary condition, 
see Shah and London [23]. Note that the S3 branch 
(the one with the extra vortices) has slightly higher 
Nusselt numbers than the Ss branch. This can be 
explained by the additional stirring caused by the extra 
vortices. In Fig. 8 a few results found in the literature 
are also shown. The agreement is generally good, 
despite the consideration of the different curvatures 
and thermal boundary conditions. That is. the cur- 
vature effect seems to be well captured by the Dean 
number alone, and the particular thermal boundary 
condition applied seems less important. 

To obtain a quantitative check on the effect of cur- 
vature, the Nusselt number ratio was computed for 
two additional ducts with E = 0.04 and 0.47, respec- 
tively. The Nusselt numbers were compared at the 
Dean numbers 128,220 and 310, of the S,, S, and S, 
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Fig. 5. (a) Diagram as in Fig. 3. &contours for Pr = 0.01 (left) and Pr = 0.71 (right). (b) Diagram as in 
Fig. 3. O-contours for Pr = 10 (left) and Pr = 100 (right). 
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(a) Pr=O.7 1 (b) PI=~ 

(c) PI=10 (d) Pi-100 
Fig. 6. Temperature profiles for toroidal square duct with i: = 0.2. S, branch at Ue = 335 

outer wall. 
Viewed from 

(a) Pr=O.7 1 (b) PI=~ 

(c} Pl=lO (d) Pr=fOO 
Fig. 7. Temperature profiles for toroidal square duct with I: = 0.2 and S, branch at DP = 220. Viewed from 

outer wall. 

branches, respectively. Prandtl numbers between 0.01 Nusselt number ratio was up to 4% higher than for 
and 100 were considered. Compared to the duct with c = 0.2 under the same conditions. Compared to the 
F = 0.2, the deviations in the Nusselt number ratio results for the friction factor ratio,fRe/(fRe), given in 
were generally less than 2%, except for L‘ = 0.04 at ref. [5], the Nusselt number ratio is somewhat less 
De = 128 and Pr 2 10. under which conditions the sensitive to variations in the curvature. 
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Fig. 8. Comparison of a few results for toroidal sauare ducts. 
Pr = 0.71. 
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Fig. 9. Computed mean Nussclt numbers for toroidal square 
duct with E = 0.2 and with Prandtl number as parameter. 

Figure 9 shows how the Prandtl number affects the 
Nusselt number ratio for a toroidal square duct. In 
general, the Nusselt number is increased for increasing 
Pr. However, the Nusselt numbers of the S, branch 
reach an upper limit for the range of Prandtl numbers 
considered. The highest values of the S, branch are 
obtained for Pr = 100. For Pr = 500, the Nusselt 
numbers fall somewhat below those for Pr = 100, and 
the slope of the curve is not so steep. Note that, for 
high Prandtl numbers, the Nusselt number ratio is 
significantly greater than one for a Dean number as 
low as 10. Note also that the gap between the Ss 
and Ss branches increases with increasing Pr. For 
Pr = 0.01, S3 and S, fall almost on top of each other, 
and for Pr = 500, the Nusselt numbers of the S3 
branch are more than twice those of the Ss branch. 
Thus, if a flow field of the S, branch could be realized 
in an application with a high Prandtl number fluid, a 
significant improvement of the heat transfer rate 
would result. The potential for obtaining extra vor- 
tices will be further discussed in the concluding 
section. 

For curved ducts of both circular and rectangular 
cross-sections, it is often found that the friction factor 
ratio and the Nusselt number ratio are proportional 
to the square root of the Dean number in the upper 
laminar regime. This is the case, for example, in the 
Nusselt number correlation given by Cheng et al. [9], 

and also in the friction factor correlation given in ref. 
[5], which reads 

& =(1+0.288De+8.8* 10-*De4)-0-3 

+0.107@ De < 1500 E < 0.4,: < 1. (26) 

Equation (26) gives correct values in both the limits 
of high and low Dean numbers, and for E = 0.2 it 
deviates by less than 2% from the computed values of 
the two-vortex branches. However, for De < 6 it is 
recommended to usefRe/(fRe), = 1. For the present 
computations, the slope of the S, branches for the 
various Prandtl numbers was used as an indication of 
the asymptotic Dean number dependence. For 
Pr > 0.71, a Dean number exponent of 0.40.45 was 
obtained, with a tendency of decreasing exponent for 
the highest Pr. These values are quite close to the 
commonly assumed value of 0.5. Based on the com- 
puted Nusselt numbers of the Ss branch, the following 
asymptotic correlations are proposed : 

Nu,/(Nu,), = 0.7De0-‘* 

0.005 < Pr < 0.02 De > 25 (27a) 

Nu m /(Nu ) = 0 213Pr0.27De0.45 Ins . 

0.71 < Pr < 2 De > 150 (27b) 

Nu In /(Nu ) = 0.278Pr0,09De0.43 Ins 

2<Pr<15 De>100 (27~) 

Nu,/(Nu,), = 0.38Pr0.03De0.4 

10 < Pr < 500 De > 150. (27d) 

For all correlations it is assumed that 

De < 1500 E < 0.5 V/E < 1. 

The upper Dean number limit is determined by the 
requirement that the flow is to be laminar and of two- 
vortex type, i.e. no extra vortices are allowed. The 
upper limit is arbitrary set to 1500, and this value 
may be higher or lower, depending on the actual how 
conditions. For example, it is likely that induced dis- 
turbances in the flow promote the formation of extra 
vortices, and thus reduce the range of validity of equa- 
tion (27a-d), compared with the discussion about the 
flow field above. The lower Dean number limit is 
indicated for each equation. For Dean numbers 
between the Si and S, branches (i.e. between L2 and 
L3), it is assumed that the Nusselt number can be 
obtained by an interpolation between the branches. 
Equation (27a) is valid for the S3 branch as well, and 
it deviates by less than 1% from the computed values. 
Equation (27b) deviates by less than 3% and equation 
(27c, d) by less than 2.3% from the computed values. 
For Prandtl numbers between 0.71 and 2 it was poss- 
ible to extend the range of validity of the asymptotic 
correlation by adding a term similar to the one in 
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equation (26). Thus, the following correlations are 
proposed : 

Nu,/(Nu,), =(l+0.122De)~“-95+0.213Pr0~‘7De042 

Pr = 0.71 (28a) 

Nu,/(Nu,), =(1+0.46&)” h+0.213Pr” “Deo4’ 

Pr = 1 (28b) 

Nu,/(Nu,), =(1+0.94De)~055-+-0.213Pr0~7De”“’ 

than that for a straight duct. In conclusion, at least 
for q/e < 1, equations (27) and (28) for the Nusselt 
number ratio are applicable. Note that for a straight 
twisted duct, the Nusselt number is almost insensitive 
to variations in Prandtl and Reynolds numbers. This 
behaviour is in accordance with the results of Mas- 
liyah and Nandakumar [15], who applied the T 
boundary condition. Finally, in comparison with the 
results in ref. [5], we note that the friction factor is 
less affected by torsion than the Nusselt number. 

Pr = 1.5 (28~) Local Nusselt numbers 

Nu,/(Nu,), = (1+ 1.8De)-“’ f0.213Pr” 27De”J5 

Pr = 2. (28d) 

For all correlations it is assumed that 

15<De<lSOO ~~0.5 and r)/~<l. 

Even though the correlations are asymptotically 
correct for low Dean numbers, less error is often 
obtained by using Nu,/(Nu,), = 1 for De < 15. Equa- 
tions (28a-d) deviate by less than 2.1% from the com- 
puted values of the S, and Ss branches ( for De > 15). 
Equation (28a) is plotted in Fig. 8. 

An effect of curvature is to increase the mean Nus- 
selt number. This increase, however, is accompanied 
by increased frictional losses. Following Kalb and 
Seader [24], a measure of the efficiency E of using 
curved ducts instead of straight ones is given by the 
Nusselt number ratio divided by the friction factor 
ratio, i.e. 

In Fig. 11 the local Nusselt number variation along 
the periphery for a toroidal square duct is shown. The 
conditions at the upper limit of the S, branch [Fig. 
11 (a)], and at a position of the S, branch [Fig. 1 I(b)] 
are given. Due to symmetry, only the variation along 
the upper half of the cross-section is indicated. The 
Nusselt number variation increases with increasing 
Pr. and higher values are generally obtained towards 
the outer wall. For the S, branch, with a two-vortex 
secondary flow, the local Nusselt number shows a flat 
profile along the outer wall, and for increasing Pr, an 
upper limit is quickly reached, see Fig. 11 (a). In fact. 
the mean Nusselt number along the outer wall is 
almost the same for Pr = 0.71 and 100. For the S, 
branch. with a four-vortex secondary flow, the mean 
Nusselt number along the outer wall instead increases 
continuously with increasing Pr, see Fig. 11 (b), and 
the local Nusselt number varies strongly, with minima 
at the corners and at the symmetry line _r = 0. These 
different behaviours ‘explain’ why the mean Nusselt 
numbers of S, reach an upper limit for the range 
of Prandtl numbers considered, but not the Nusselt 
numbers of S,. Due to the uniform wall temperature, 
the local Nusselt number drops to zero at the corners. 
In fact, precisely at the corners, the Nusselt number is 
not defined, since the normal in equation (16) is not 
defined. We could define the normal, at a corner for 
example. as the normalized vector sum of the 
expressions given in equation (16). Then, the local 
Nusselt number would be nonzero at the corners, 
thus yielding a discontinuous variation along the 
periphery. 

E = N~rnlWrds 
.fW(f Re), 

An efficiency greater than one indicates a better 
performance of curved ducts than of straight ones. 
For solutions of the Ss branch, E is about 0.7 for 
Pr = 0.01, about 1.3 for Pr = 0.71 and about 2.0 for 
Pr = 10. These values are similar to those obtained 
by Kalb and Seader [24], for ducts with a circular 
cross-section. 

The effect of torsion on the mean Nusselt number 
is indicated in Fig. 10. Note that the Reynolds number 
on the horizontal axis allows for a comparison with 
the straight twisted duct, for which the Dean number 
is not defined. Only Nusselt numbers of the S, branch 
ale plotted in Fig. 10. S5 could only be detected for 
q < 0.16, and for such a low torsion the Nusselt num- 
bers of the S, branch are almost identical to the values 
for a toroidal duct with the same dimensionless cur- 
vature E. Also for the S, branch, the Nusselt number 
is hardly affected by a small torsion, even though 
a decreased value is obtained for smaller Reynolds 
numbers, and especially if the Prandtl number is high, 
see Fig. 10. For Reynolds numbers close to the upper 
limit L1, a slight increase in the Nusselt number is 
obtained for ducts of moderate torsion. For ducts of 
large torsion, the Nusselt number approaches the 
value for a straight twisted duct, which is slightly less 

For helical ducts with a finite pitch, the local Nusselt 
number is asymmetric about y = 0. According to Fig. 
12, which shows the local Nusselt number variation 
for a helical square duct with a relatively large pitch, 
the degree of asymmetry is quite moderate, even 
though an increased asymmetry can be observed for 
increasing Pr. We also note that the local Nusselt 
number can be estimated from the &contours pro- 
vided in Fig. 12. 

Figure 13 shows the local Nusselt number variation 
for a helical duct with a large torsion compared to 
the curvature. The highest Nusselt numbers are now 
obtained along the inner wall. Note that, for a low 
Prandtl number of 0.01 [Fig. 13(a)], the Nusselt num- 
ber is discontinuous at the corners; a positive NM is 
obtained when approaching the corner from one wall, 
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Fig. 10. Computed mean Nusselt numbers for helical square ducts. 
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Fig. 11. Local Nusselt number variation along periphery for 
toroidal square duct with E = 0.2. (a) S, branch at De = 335. 

(b) .S, branch at De = 220. 

and a negative Nu is obtained when approaching from 
the other wall. This is explained by the fact that for 
z # 0, the normal to the duct wall has alternating 
positive and negative components in the axial direc- 
tion at either side of the corners, see equation (16). 
Thus, when the torsion is large and the temperature 
gradients in the cross-section are small in comparison 
to the axial temperature gradient y, which is the case 
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for small Prandtl numbers, then the heat flux in the 
axial direction influences the local Nusselt number 
significantly, and a situation as in Fig. 13(a) is 
obtained. Actually, for all ducts with T # 0, the Nus- 
selt number is discontinuous at the corners, but the 
discontinuity is normally very small. For example, if 
the Prandtl number is increased to 0.71, as in Fig. 
13(b), the discontinuity cannot be distinguished. For 
the extreme cases with high torsion and low Prandtl 
numbers, the local Nusselt number cannot be esti- 
mated from the &contours. It would be possible to 
avoid the discontinuous Nusselt numbers by using a 
different heat flux in the definition of the heat transfer 
coefficient, equation (19). Instead of using the heat 
flux normal to the duct wall, qN, we could use the heat 
flux in the directions obtained by forcing r to zero in 
equation (16), i.e. in the n-direction at x = -(I, and 
in the b-direction at y = -b (and with reversed sign 
at x = a and y = 6, respectively). 

CONCLUDING REMARKS 

Fully developed laminar forced convective heat 
transfer in helical square ducts has been investigated 
numerically using the finite-volume method. Stable 
flow solutions, belonging to different solution bran- 
ches, are only obtained for limited Dean number inter- 
vals. For ducts of small pitch or torsion, the flow and 
heat transfer characteristics are similar to those of a 
toroidal duct with the same dimensionless curvature E. 
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Fig. 12. Local Nusselt number variation along periphery for Fig. 13. Local Nusselt number variation along periphery for 
helical square duct with E = q = 0.2, De = 132. Outer wall is helical square duct with E = 0.2 and q = 1. De = 135. Outer 

to the right. (a) Pr = 0.71, (b) Pr = 10. wall is to the right. (a) Pr = 0.01. (b) Pr = 0.71. 

The temperature field is highly affected by the Prandtl 
number. The mean Nusselt number normally in- 
creases with increasing Pr, but for the SC branch an 
upper limit is reached for Pr about 100. The gap in 
the mean Nusselt number between the two-vortex Ss 
branch and the four-vortex S3 branch increases with 
increasing Pr, and for Pr equal to 500, the mean Nus- 
selt number of the S3 branch is twice that of the S5 
branch. Thus, in an application with a high Prandtl 
number fluid, it might be favourable to obtain a four- 
vortex flow, if a high heat transfer rate is desired. Bara 
et al. [22], in their experiments on developing laminar 
flow in a toroidal square duct, obtained a four-vortex 
flow by disturbing the flow at the outer wall at the 
inlet using a symmetrically positioned small pin. In 
the experiments on flow in a helical square duct with 
a finite pitch by Bolinder and Sunden [6], a similar 
arrangement with a small pin however, did, not prove 
effective in obtaining a four-vortex flow. More exten- 
sive disturbances seemed to be necessary. A stable 

four-vortex flow is probably more difficult to obtain 
in a helical duct with a finite pitch than in a toroidal 
duct, due to the inherent asymmetry of a helical duct. 
Another way to obtain an increased heat transfer rate 
would be to utilize transitional flow, which is char- 
acterized by unsteady extra vortices emerging from 
the outer wall. According to ref. [6], for a curved 
square duct, transition phenomena often seem to 
appear at lower Reynolds numbers than for a straight 
duct. 
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